Exploiting the Natural Dynamics of Series Elastic Robots by Actuator-Centered Sequential Linear Programming
نویسندگان
چکیده
Series elastic robots are best able to follow trajectories which obey the limitations of their actuators, since they cannot instantly change their joint forces. In fact, their actuators can even allow them to improve over the performance of a robot with an ideal force source actuator by storing and releasing energy. In this paper, we formulate the trajectory optimization problem for series elastic robots in a new way based on sequential linear programming. Our framework is unique in the separation of the actuator dynamics from the rest of the dynamics, and in the use of a tunable pseudo-mass parameter that improves the discretization accuracy of our approach. The actuator dynamics are truly linear, which allows them to be excluded from trust-region mechanics. This causes our algorithm to have similar run times with and without the actuator dynamics. We test the accuracy of our discretization strategy using conservation of energy. We then demonstrate our optimization algorithm by tuning a jump behavior for a single leg robot in simulation, showing that compliance allows a higher jump and takes a similar amount of computation time.
منابع مشابه
Optimal Robust Control for a Series Elastic Actuator assisting Knee Joint
Rehabilitation and assistive systems such as rotary series elastic actuators (RSEA) should provide the desired torque precisely. In this paper, to improve the life quality of those who suffer from weak knees, the control problem of a rotary series elastic actuator (RSEA) has been studied in order to generate soft human walking motion. These actuators produce the require torque, but the nonlinea...
متن کاملOptimal Trajectory of Flexible Manipulator with Maximum Load Carrying Capacity
In this paper, a new formulation along with numerical solution for the problem of finding a point-to-point trajectory with maximum load carrying capacities for flexible manipulators is proposed. For rigid manipulators, the major limiting factor in determining the Dynamic Load Carrying Capacity (DLCC) is the joint actuator capacity. The flexibility exhibited by light weight robots or by robots o...
متن کاملStability Analysis and Robust PID Control of Cable Driven Robots Considering Elasticity in Cables
In this paper robust PID control of fully-constrained cable driven parallel manipulators with elastic cables is studied in detail. In dynamic analysis, it is assumed that the dominant dynamics of cable can be approximated by linear axial spring. To develop the idea of control for cable robots with elastic cables, a robust PID control for cable driven robots with ideal rigid cables is firstly de...
متن کاملDirect adaptive fuzzy control of flexible-joint robots including actuator dynamics using particle swarm optimization
In this paper a novel direct adaptive fuzzy system is proposed to control flexible-joints robot including actuator dynamics. The design includes two interior loops: the inner loop controls the motor position using proposed approach while the outer loop controls the joint angle of the robot using a PID control law. One novelty of this paper is the use of a PSO algorithm for optimizing the contro...
متن کاملA Compact Series Elastic Actuator for Bipedal Robots with Human-Like Dynamic Performance
Series-elastic actuation offers several important benefits to dynamic robots, including high-bandwidth force control and improved safety. While this approach has become common among legged robots, the lack of commercial series-elastic actuators and the unique design requirements of these robots leaves custom-built actuators as the only option. These custom actuators are often designed for nomin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.10190 شماره
صفحات -
تاریخ انتشار 2018